Autonomous Vehicle : Automotive v.s. Robotic

Whether fully autonomous, partially autonomous, or drive-by-wire, before you invest in your autonomous vehicle development, it’s important to have a control system strategy at the core of your project. Though there are many ways to approach system development in the mobility market, automotive and robotic-born strategies tend to be the two dominant schools of thought specific to the autonomous vehicle development sector.

Both automotive and robotics-born approaches share the goal of allowing developers to reach a desired level of autonomy. There are key differences between the two–particularly regarding safety and scalability–that can impact end-vehicles. If you’re not sure what the differences are (or which approach is right for you), keep reading.

Robotic Autonomous Vehicle Control Platforms

Born out of a fast-paced industry focused on research and development, robotic vehicle control platforms offer developers a way to gain a level autonomous control quickly. Typically, these systems are designed solely for research purposes, with inexpensive hardware components strung together in easy, plug-and-play product offerings.

These solutions provide a fast, budget-friendly route to autonomy that is for vehicles being studied in controlled settings. Developers hoping to scale their machines to production may struggle to find a robotic control offering that’s up to task. Prototype-intent hardware and software that fails to meet strict production safety requirements like those outlined in ISO 26262 can prove difficult obstacles to overcome when taking a robotics-born vehicle control platform to production.

If your intent is to build an end-vehicle that will become more than a prototype in a lab, searching for a more sustainable, automotive-grade control platform may prove a better solution.

Automotive Grade Autonomous Vehicle Control Platforms

Unlike its robotics-born competition, automotive-based autonomous control solutions take a different approach to vehicle control. With a focus on safety and scalability, automotive-grade solutions understand that a machine may very well move beyond a controlled environment and into mass-production. Because of this, these solutions typically contain rugged, production hardware and safety-certified control software approaches. This ensures the machine is as safe as it is functional.

Automotive-grade solutions tend to cost more than robotics-based ones, but their ability to scale to production without time-consuming rework makes them worth the higher cost. Some products, like New Eagle’s drive-by-wire kit, even offer the same fast, easy plug-and-play control common to robotics-born solutions on a scalable, automotive-grade platform.

Autonomous Vehicle Development Next Steps

Depending on your timeline, budget and project goals, one control system strategy may align itself better than the other. Whether a research-focused robotic solution, or a safe, production-grade automotive one, if you’re still not sure where to start, consider consulting with our control system experts. Our engineers can provide you with recommendations, next steps, and a road map to successful autonomous vehicle development. Just contact us to get started!